Publications

Asgari, HM; Mojiri-Forushani, H; Mahboubi, M (2023). Temporal and spatial pattern of dust storms, their polycyclic aromatic hydrocarbons, and human health risk assessment in the dustiest region of the world. ENVIRONMENTAL MONITORING AND ASSESSMENT, 195(1), 76.

Abstract
This study evaluated the concentration and health risks of polycyclic aromatic hydrocarbons (PAHs) in Abadan City under 4 different climatic conditions: normal days, dusty days, dust with northwesterly winds, and dust with southeasterly winds. It also determined the sources of aromatics and discussed the relationship between meteorological parameters and PAH concentrations. The spatiotemporal distribution of dust in the area was determined using the HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) back trajectory model, moderate resolution imaging spectroradiometer (MODIS) images. For this purpose, sampling was performed for 70 days using an Omni device. The concentrations of 16 PAHs (USEPA) ranged from 46.22 to 90.96 ng/m(3). The highest concentration of high molecular weight (HMW) PAHs was 4-6 rings, of which 4 rings were predominant in all samples. PAH sources were identified using diagnostic ratios and principal component analysis (PCA), and it was shown that PAHs mainly originate from a mixture of sources, including vehicular emissions, petrol emissions, and traffic. Wind speed was negatively correlated with dust, except on dusty days. This result indicates a decrease in PAH concentrations when wind speed increases. On the other hand, the dust correlation with PAH was positive on normal days, but a negative correlation was observed on dusty days. This result was due to the lower concentration of PAHs from natural resources (such as dust source areas) vs. human resources (such as traffic and industry). PAH health risk assessment in Abadan City showed that the risk of carcinogenesis was higher on normal days and through skin contact. The probability of incremental lifetime cancer risk (ILCR) in all sampling conditions was potential in terms of carcinogenic risk (10(-4)-10(-6)). As a critical risk factor, relevant authorities should prevent, control, and reduce it.

DOI:
10.1007/s10661-022-10703-7

ISSN:
1573-2959