Publications

Singh, SS; Jeganathan, C (2024). Quantifying forest resilience post forest fire disturbances using time-series satellite data. ENVIRONMENTAL MONITORING AND ASSESSMENT, 196(1), 26.

Abstract
Quantification of forest resilience will help us to manage the sustainability of the forest environment and the safety of biodiversity. Measuring forest resilience is crucial for ensuring long-term health of the forest ecosystem in the face of ongoing environmental changes and disturbances. This study focuses on providing a framework to estimate forest resilience scores to assess the vegetation condition after a disturbance. The resilience calculation framework provided uses number of recovery days, the phenological performance level of vegetation in the year when the disturbance took place, long-term mean phenological performance, and greenness levels in subsequent year to calculate the final resilience score at each pixel. Recovery of forests using Landsat data with the help of Normalized Difference Vegetation Index or Normalized Burn Ratio poses a challenge for continuous monitoring of forested landscapes due to cloud cover and availability of scenes at continuous intervals in Landsat datasets. In this regard, MODIS 16-day EVI products were used in this study (2001 to 2020) for monitoring vegetation health before, during, and after the disaster. Bandhavgarh National Park (BNP) located in Madhya Pradesh, India is considered for this study as it witnessed major forest fire breakouts in the second half of March 2018. The objectives of the study are the following: (1) to estimate post-fire recovery days and (2) to formulate new resilience index. The study revealed that the northern part of BNP is more vulnerable and shows slow recovery. The relationship between occupation of people living inside and in the neighboring area with forest resilience is also investigated in this study.

DOI:
1573-2959

ISSN:
10.1007/s10661-023-12183-9