Publications

Rhoades, AM; Huang, XY; Ullrich, PA; Zarzycki, CM (2016). Characterizing Sierra Nevada Snowpack Using Variable-Resolution CESM. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 55(1), 173-196.

Abstract
The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling techniquevariable-resolution global climate modeling within the Community Earth System Model (VR-CESM)at horizontal resolutions of 0.125 degrees (14 km) and 0.25 degrees (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere-ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the Daymet, Cal-Adapt, NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California's complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of <7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December-February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.

DOI:
10.1175/JAMC-D-15-0156.1

ISSN:
1558-8424