Zheng, DL, Heath, LS, Ducey, MJ (2008). Satellite detection of land-use change and effects on regional forest aboveground biomass estimates. ENVIRONMENTAL MONITORING AND ASSESSMENT, 144(3-Jan), 67-79.
Abstract
We used remote-sensing-driven models to detect land-cover change effects on forest above-ground biomass (AGB) density (Mg.ha(-1), dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data and land-cover map ( University of Maryland) from Advanced Very High Resolution Radiometer (AVHRR) and 2001 products from Moderate Resolution Imaging Spectroradiometer ( MODIS) at 1-km resolution for the region; and 30-m resolution land-cover maps from the National Land Cover Data (NLCD) for a subarea to conduct nine simulations to address our questions. Sensitivity analysis showed that ( 1) AVHRR data tended to underestimate AGB density by 11%, on average, compared to that estimated using MODIS data; ( 2) regional mean AGB density increased slightly from 124 ( 1992) to 126 Mg ha(-1) ( 2001) by 1.6%; ( 3) a substantial decrease in total forest AGB across the region was detected, from 2,507 ( 1992) to 1,961 Tg ( 2001), an annual rate of -2.4%; and ( 4) in the subarea, while NLCD-based estimates suggested a 26% decrease in total AGB from 1992 to 2001, AVHRR/MODIS-based estimates indicated a 36% increase. The major source of uncertainty in change detection of total forest AGB over large areas was due to area differences from using land-cover maps produced by different sources. Scaling up 30-m land-cover map to 1-km resolution caused a mean difference of 8% ( in absolute value) in forest area estimates at the county-level ranging from 0 to 17% within a 95% confidence interval.
DOI:
10.1007/s10661-007-9946-1
ISSN:
0167-6369