Publications

Cleugh, HA, Leuning, R, Mu, QZ, Running, SW (2007). Regional evaporation estimates from flux tower and MODIS satellite data. REMOTE SENSING OF ENVIRONMENT, 106(3), 285-304.

Abstract
Two models were evaluated for their ability to estimate land surface evaporation at 16-day intervals using MODIS remote sensing data and surface meteorology as inputs. The first was the aerodynamic resistance-surface energy balance model, and the second was the Penman-Monteith (P-M) equation, where the required surface conductance is estimated from remotely-sensed leaf area index. The models were tested using 3 years of evaporation and meteorological measurements from two contrasting Australian ecosystems, a cool temperate, evergreen Eucalyptus forest and a wet/dry, tropical savanna. The aerodynamic resistance-surface energy balance approach failed because small errors in the radiative surface temperature translate into large errors in sensible heat, and hence into estimates of evaporation. The P-M model adequately estimated the magnitude and seasonal variation in evaporation in both ecosystems (RMSE=27 W m(-2), R-2 = 0.74), demonstrating the validity of the proposed surface conductance algorithm. This, and the ability to constrain evaporation estimates via the energy balance, demonstrates the superiority of the P-M equation over the surface temperature-based model. There was no degradation in the performance of the P-M model when gridded meteorological data at coarser spatial (0.05 degrees) and temporal (daily) resolution were substituted for local ly-measured inputs. The P-M approach was used to generate a monthly evaporation climatology for Australia from 2001 to 2004 to demonstrate the potential of this approach for monitoring land surface evaporation and constructing monthly water budgets frorn 1-krn to continental spatial scales. (c) 2006 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2006.07.007

ISSN:
0034-4257