Chylek, P, Clodius, WB, Bender, SC, Atkins, WH, Balick, LK (2004). Sensitivity of near infrared total water vapour estimate to calibration errors. INTERNATIONAL JOURNAL OF REMOTE SENSING, 25(21), 4457-4470.

Analysis of satellite data to estimate the precipitable water (also called the columnar water vapour) amount often leads to systematic errors in deduced precipitable water (PW). The causes of systematic errors are likely to be instrumental calibration errors rather than variability of atmospheric parameters. We use the MODTRAN 4.0 radiative transfer code to model effects of various calibration errors on the Multi-spectral Thermal Imager (MTI) daytime total water vapour estimate. From the considered sources of calibration errors (spectral band centre error, spectral bandwidth error and radiometric calibration error) the radiometric calibration error has the largest influence on the accuracy of total water vapour estimate. When the radiometric calibration error between 1% and 5% is combined with the estimated spectral band centre error of 1 nm and the bandwidth error of 0.5 nm, the total systematic error of the columnar water vapour estimate is expected to be between 8% and 26%. The accuracy of the retrieved PW using the MTI imagery over the NASA Stennis site and Oklahoma DOE (Department of Energy) ARM (Atmospheric Radiation Measurement program) site is about 17%, well within the estimated range due to calibration errors. A similarity between the MTI and the MODIS (Moderate Resolution Imaging Spectral-Radiometer) bands used for water vapour estimate suggests that a similar error analysis may be valid for the MODIS sensor. However, the narrow band instruments (with bandwidth around 10 nm) are much more sensitive to the band centre calibration error.