Publications

Wooster, MJ, Zhukov, B, Oertel, D (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. REMOTE SENSING OF ENVIRONMENT, 86(1), 83-107.

Abstract
A major focus in global change research is to quantify the amount of gaseous and particulate pollutants emitted from terrestrial vegetation fires. Determination of the emitted radiant energy released during biomass combustion episodes (the so-called fire radiative energy or FRE) has been suggested as a new tool for determining variations in biomass combustion rates and the rate of production of atmospheric pollutants. We review the physical principals behind the remote determination of FRE and present an alternative method for its derivation via analysis of 'fire pixel' radiances in the middle infrared spectral region. We compare our method to the existing FRE retrieval approach used in the EOS Moderate Resolution Imaging Spectro-radiometer (MODIS) fire products, and to retrievals of FRE based on derived fire temperature and area made via the so-called Bi-spectral method. We test each FRE retrieval method using both simulated data and imagery from a new experimental space mission, the Bi-spectral InfraRed Detection (BIRD) small satellite, which has sensors specifically designed for the study of active fires. We analyse near simultaneous MODIS and BIRD data of the fires that burned around Sydney, Australia in January 2002. Despite the markedly different pixel size and spectral coverage of these sensors, where the spatial extent of the fire pixel groups detected by MODIS and BIRD are similar, the derived values of FRE for these fires agree to within +/- 15%. However, in certain fires, the lower spatial resolution of MODIS appears to prevent many of the less intensely radiating fire pixels being detected as such, meaning MODIS underestimates FRE for these fires by up to 46% in comparison to BIRD. Though the FRE release of each of these low intensity fire pixels is relatively low, their comparatively large number makes their overall FRE significant. Thus, total FRE release of the Sydney fires on 5 January 2002 is estimated to be 6.5 x 10(9) J s(-1) via BIRD but 4.0 x 10(9) J s(-1) via MODIS. The ability of BIRD to resolve individual fire fronts further allows the first accurate calculation of 'radiative' fireline intensity from spaceborne measurements, providing values of 15-75 kJ s(-1) m(-1) for fire fronts that are up to 9 kin in length. Finally, we analyse the effectiveness of the satellite-based FRE retrieval methods in estimating the FRE from the active flaming and smouldering components only (FREActive, believed to be proportional to the rate of biomass combustion), despite the sensor receiving additional radiance from the 'cooling ground'. The MIR radiance method appears particularly strong in this regard, allowing FREActive to be estimated to within +/- 30% in the range 100-100,000 J s(-1) m(-2). These results provide further confidence in the ability of spacebome missions to derive physically meaningful values of FRE that could be used to support biomass burning emissions inventories. Future comparisons between FRE derived via MODIS and those from higher spatial resolution BIRD or airborne imagery may allow the MODIS-derived FRE values to be 'calibrated' for any systematic underestimation. We therefore expect FRE to become an important tool for enhancing global studies of terrestrial vegetation fires with infrared remote sensing, particularly as the majority of large fires are now imaged four times per day via the MODIS instruments on the Terra and Aqua spacecraft. (C) 2003 Elsevier Science Inc. All rights reserved.

DOI:
10.1016/S0034-4257(03)00070-1

ISSN:
0034-4257