Lotsch, A, Tian, Y, Friedl, MA, Myneni, RB (2003). Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors. INTERNATIONAL JOURNAL OF REMOTE SENSING, 24(10), 1997-2016.
Abstract
Land cover maps are used widely to parameterize the biophysical properties of plant canopies in models that describe terrestrial biogeochemical processes. In this paper, we describe the use of supervised classification algorithms to generate land cover maps that characterize the vegetation types required for Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) retrievals from MODIS and MISR. As part of this analysis, we examine the sensitivity of remote sensing-based retrievals of LAI and FPAR to land cover information used to parameterize vegetation canopy radiative transfer models. Specifically, a decision tree classification algorithm is used to generate a land cover map of North America from Advanced Very High Resolution Radiometer (AVHRR) data with 1 km spatial resolution using a six-biome classification scheme. To do this, a time series of normalized difference vegetation index data from the AVHRR is used in association with extensive site-based training data compiled using Landsat Thematic Mapper (TM) and ancillary map sources. Accuracy assessment of the map produced via decision tree classification yields a cross-validated map accuracy of 73%. Results comparing LAI and FPAR retrievals using maps from different sources show that disagreement in land cover labels generally do not translate into strong disagreement in LAI and FPAR maps. Further, the main source of disagreement in LAI and FPAR maps can be attributed to specific biome classes that are characterized by a continuum of fractional cover and canopy structure.
DOI:
10.1080/01431160210154858
ISSN:
0143-1161