Publications

Lazzara, MA, Keller, LM, Stearns, CR, Thom, JE, Weidner, GA (2003). Antarctic satellite meteorology: Applications for weather forecasting. MONTHLY WEATHER REVIEW, 131(2), 371-383.

Abstract
For over 30 years, weather forecasting for the Antarctic continent and adjacent Southern Ocean has relied on weather satellites. Significant advancements in forecasting skill have come via the weather satellite. The advent of the high-resolution picture transmission (HRPT) system in the 1980s and 1990s allowed real-time weather forecasting to become a reality. Small-scale features such as mesocyclones and polar lows could be tracked and larger-scale features such as katabatic winds could be detected using the infrared channel. Currently, HRPT is received at most of the manned Antarctic stations. In the late 1990s the University of Wisconsin composites, which combined all available polar and geostationary satellite imagery, allowed a near-real-time hemispheric view of the Southern Ocean and Antarctic continent. The newest generation of satellites carries improved vertical sounders, special sensors for microwave imaging, and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. In spite of the advances in sensors, shortcomings still impede the forecaster. Gaps in satellite data coverage hinder operations at certain times of the day. The development and implementation of software to derive products and visualize information quickly has lagged. The lack of high-performance communications links at many of the manned stations reduces the amount of information that is available to the forecasters. Future applications of weather satellite data for Antarctic forecasting include better retrievals of temperature and moisture and more derived products for fog, cloud detection, and cloud drift winds. Upgrades in technology at Antarctic stations would allow regional numerical prediction models to be run on station and use all the current and future satellite data that may be available.

DOI:

ISSN:
0027-0644