Lucht, W, Schaaf, CB, Strahler, AH (2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 38(2), 977-998.
Abstract
Spectral albedo may be derived from atmospherically corrected, cloud-cleared multiangular reflectance observations through the inversion of a bidirectional reflectance distribution function (BRDF) model and angular integration. This paper outlines an algorithm suitable for this task that makes use of kernel-based BRDF models. Intrinsic land surface albedos are derived, which may be used to derive actual albedo by taking into account the prevailing distribution of diffuse skylight, Spectral-to-broadband conversion is achieved using band-dependent weighting factors. The validation of a suitable BRDF model, the semiempirical Ross-Li (reciprocal RossThick-LiSparse) model and its performance under conditions of sparse angular sampling and noisy reflectances are discussed, showing that the retrievals obtained are generally reliable. The solar-zenith angle dependence of albedo may be parameterized by a simple polynomial that makes it unnecessary for the user to be familiar with the underlying BRDF model. The algorithm given is that used for the production of a BRDF/albedo standard data product from NASA's EOS-MODIS sensor, for which an at-launch status is provided. Finally, the algorithm is demonstrated on combined AVHRR and GOES observations acquired over New England, from which solar zenith angle-dependent albedo maps with a nominal spatial resolution of 1 km are derived in the visible band. The algorithm presented may be employed to derive albedo from space-based multiangular measurements and also serves as a guide for the use of the MODIS BRDF/albedo product.
DOI:
ISSN:
0196-2892