Publications

Gao, F, Strahler, AH, Zhu, QJ, Li, XW (1999). Improvement on the inversion of kernel-driven BRDF model. CHINESE SCIENCE BULLETIN, 44(1), 76-79.

Abstract
Kernel-driven model was chosen to calculate global albedo in the project of multiangular remote sensor MODIS. The best kernels were selected by the venerable least square method. The result of this method was very unstable when only a small amount of angular observations is available. A new criterion has been estalished, called least variance for the kernel's selection. It takes into consideration the effects of model and measurement based on the information inverse theory. Several tests showed that least variance has many advantages. First, it is less sensitive to noises. Second, it operates well in small sample size. Third, it depends less on the sampling position.

DOI:

ISSN:
1001-6538