Arsenault, KR; Houser, PR; De Lannoy, GJM; Dirmeyer, PA (2013). Impacts of snow cover fraction data assimilation on modeled energy and moisture budgets. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 118(14), 7489-7504.
Abstract
Two data assimilation (DA) methods, a simple rule-based direct insertion (DI) approach and a one-dimensional ensemble Kalman filter (EnKF) method, are evaluated by assimilating snow cover fraction observations into the Community Land surface Model. The ensemble perturbation needed for the EnKF resulted in negative snowpack biases. Therefore, a correction is made to the ensemble bias using an approach that constrains the ensemble forecasts with a single unperturbed deterministic LSM run. This is shown to improve the final snow state analyses. The EnKF method produces slightly better results in higher elevation locations, whereas results indicate that the DI method has a performance advantage in lower elevation regions. In addition, the two DA methods are evaluated in terms of their overall impacts on the other land surface state variables (e.g., soil moisture) and fluxes (e.g., latent heat flux). The EnKF method is shown to have less impact overall than the DI method and causes less distortion of the hydrological budget. However, the land surface model adjusts more slowly to the smaller EnKF increments, which leads to smaller but slightly more persistent moisture budget errors than found with the DI updates. The DI method can remove almost instantly much of the modeled snowpack, but this also allows the model system to quickly revert to hydrological balance for nonsnowpack conditions.
DOI:
10.1002/jgrd.50542
ISSN: