Publications

Li Xiaolong; Zhao Chaofang; Ma Youjun; Liu Zhishen (2014). Field Experiments of Multi-Channel Oceanographic Fluorescence Lidar for Oil Spill and Chlorophyll-a Detection. JOURNAL OF OCEAN UNIVERSITY OF CHINA, 13(4), 597-603.

Abstract
A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll-a (Chl-a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl-a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl-a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels (I-495/I-405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl-a concentrations in the upper layer of the ocean. A comparison of relative Chl-a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl-a in the upper layer of ocean water.

DOI:
10.1007/s11802-014-2098-3

ISSN:
1672-5182; 1993-5021