Publications

Maffei, Carmine; Menenti, Massimo (2014). A MODIS-based perpendicular moisture index to retrieve leaf moisture content of forest canopies. INTERNATIONAL JOURNAL OF REMOTE SENSING, 35(5), 1829-1845.

Abstract
Moisture dictates vegetation susceptibility to fire ignition and propagation. Various spectral indices have been proposed for the estimation of equivalent water thickness (EWT), which is defined as the mass of liquid water per unit of leaf surface. However, fire models use live fuel moisture content (LFMC) as a measure of vegetation moisture. LFMC is defined as the ratio of the mass of the liquid water in a leaf over the mass of dry matter, and traditional spectral indices are not as effective as with EWT in capturing LFMC variability. The aim of this research was to explore the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua satellites in retrieving LFMC from top of the canopy reflectance, and to develop a new spectral index sensitive to this parameter. All the analyses were based on synthetic canopy spectra constructed by coupling the PROSPECT (leaf optical properties model) and SAIL (Scattering by Arbitrarily Inclined Leaves) radiative transfer models. Simulated top of the canopy spectra were then convolved to MODIS land' channels 1-7 spectral response functions. All band pairs were evaluated to determine the subspace of MODIS measurements where the separability of points based on their value of LFMC was the highest. This led to the identification of isolines of LFMC in the plane defined by MODIS reflectance measurements in channels 2 and 5; the isolines are straight and parallel, and ordered from lower to higher values of LFMC. This observation allowed the construction of a novel spectral index that is directly related to LFMC - the perpendicular moisture index (PMI). This index measures the distance of a point in the plane spanned by reflectance measurements in MODIS channels 2 and 5 from a reference line, that of completely dry vegetation. Validation against simulated data showed that PMI exhibits a linear relationship with LFMC. When the vegetation cover is dense, the LFMC explains most of the variability in the PMI (R-2=0.70 when LAI> 2; R-2=0.87 when LAI> 4). When the LAI is lower, the contribution of soil background to the measured reflectance increases, and the index underestimates LFMC. The PMI was also validated against the LOPEX93 (Leaf Optical Properties Experiment 1993) data set of leaf optical and biophysical measurements, scaled to canopy reflectance with SAIL, showing acceptable results (R-2=0.56 when LAI> 2; R-2=0.63 when LAI> 4).

DOI:
10.1080/01431161.2013.879348

ISSN:
0143-1161; 1366-5901