Publications

Mao, Y. H.; Li, Q. B.; Chen, D.; Zhang, L.; Hao, W. -M.; Liou, K. -N. (2014). Top-down estimates of biomass burning emissions of black carbon in the Western United States. ATMOSPHERIC CHEMISTRY AND PHYSICS, 14(14), 7195-7211.

Abstract
We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve the spatiotemporal distributions of the biomass burning BC emissions from the Global Fire Emissions Database (GFEDv2). The adjustment primarily shifts emissions from late to middle and early summer (a 33% decrease in September-October and a 56% increase in June-August) and leads to appreciable increases in modeled surface BC concentrations in early and middle summer, especially at the 1-2 and 2-3 km altitude ranges. We then conduct analytical inversions at both 2 degrees x 2.5 degrees and 0.5 degrees x 0.667 degrees (nested over North America) horizontal resolutions. The a posteriori biomass burning BC emissions for July-September are 31.7 Gg at 2 degrees x 2.5 degrees (an increase by a factor of 4.7) and 19.2 Gg at 0.5 degrees x 0.667 degrees (an increase by a factor of 2.8). The inversion results are rather sensitive to model resolution. The a posteriori biomass burning emissions at the two model resolutions differ by a factor of similar to 6 in California and the Southwest and by a factor of 2 in the Pacific Northwest. The corresponding a posteriori anthropogenic BC emissions are 9.1 Gg at 2 degrees x 2.5 degrees (a decrease of 48 %) and 11.2 Gg at 0.5 degrees x 0.667 degrees (a decrease of 36 %). Simulated surface BC concentrations with the a posteriori emissions capture the observed major fire episodes at most sites and the substantial enhancements at the 1-2 and 2-3 km altitude ranges. The a posteriori emissions also lead to large bias reductions (by similar to 30% on average at both model resolutions) in modeled surface BC concentrations and significantly better agreement with observations (increases in Taylor skill scores of 95% at 2 degrees x 2.5 degrees and 42% at 0.5 degrees x 0.667 degrees).

DOI:
10.5194/acp-14-7195-2014

ISSN:
1680-7316; 1680-7324