Publications

Bouali, Marouan; Ignatov, Alexander (2014). Adaptive Reduction of Striping for Improved Sea Surface Temperature Imagery from Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 31(1), 150-163.

Abstract
The Suomi National Polar-Orbiting Partnership (S-NPP) satellite was successfully launched on 28 October 2011. It carries five new-generation instruments, including the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS is a whiskbroom radiometer that scans the surface of the earth using a rotating telescope assembly, a double-sided half-angle mirror, and 16 individual detectors. Substantial efforts are being made to accurately calibrate all detectors in orbit. As of this writing, VIIRS striping is reduced to levels below those seen in corresponding Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) bands and meets the program specifications and requirements. However, the level 2 SST products derived from level 1 sensor data records (SDRs) thermal emissive bands still show residual striping. These artifacts reduce the accuracy of SST measurements and adversely affect cloud masking and the output of downstream applications, such as thermal front detection. To improve the quality of SST imagery derived from the VIIRS sensor, an adaptive algorithm was developed for operational use within the National Environmental Satellite, Data, and Information Service (NESDIS)'s SST system. The methodology uses a unidirectional quadratic variational model to extract stripe noise from the observed image prior to nonlocal filtering. Evaluation of the algorithm performance over an extended dataset demonstrates a significant improvement in the Advanced Clear-Sky Processor for Oceans (ACSPO) VIIRS SST image quality, with normalized improvement factors (NIF) varying between 5% and 25%.

DOI:
10.1175/JTECH-D-13-00035.1

ISSN:
0739-0572; 1520-0426