Brewin, Robert J. W.; Melin, Frederic; Sathyendranath, Shubha; Steinmetz, Francois; Chuprin, Andrei; Grant, Mike (2014). On the temporal consistency of chlorophyll products derived from three ocean-colour sensors. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 97, 171-184.
Abstract
Satellite ocean-colour sensors have life spans lasting typically five-to-ten years. Detection of long-term trends in chlorophyll-a concentration (Chl-a) using satellite ocean colour thus requires the combination of different ocean-colour missions with sufficient overlap to allow for cross-calibration. A further requirement is that the different sensors perform at a sufficient standard to capture seasonal and inter-annual fluctuations in ocean colour. For over eight years, the SeaWiFS, MODIS-Aqua and MERIS ocean-colour sensors operated in parallel. In this paper, we evaluate the temporal consistency in the monthly Chl-a time-series and in monthly inter-annual variations in Chl-a among these three sensors over the 2002-2010 time period. By subsampling the monthly Chl-a data from the three sensors consistently, we found that the Chl-a time-series and Chl-a anomalies among sensors were significantly correlated for >90% of the global ocean. These correlations were also relatively insensitive to the choice of three Chl-a algorithms and two atmospheric-correction algorithms. Furthermore, on the subsampled time-series, correlations between Chl-a and time, and correlations between Chl-a and physical variables (sea-surface temperature and sea-surface height) were not significantly different for >92% of the global ocean. The correlations in Chl-a and physical variables observed for all three sensors also reflect previous theories on coupling between physical processes and phytoplankton biomass. The results support the combining of Chl-a data from SeaWiFS, MODIS-Aqua and MERIS sensors, for use in long-term Chl-a trend analysis, and highlight the importance of accounting for differences in spatial sampling among sensors when combining ocean-colour observations. (C) 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
DOI:
10.1016/j.isprsjprs.2014.08.013
ISSN:
0924-2716