Hu, Xuefei; Waller, Lance A.; Lyapustin, Alexei; Wang, Yujie; Liu, Yang (2014). Improving satellite-driven PM2.5 models with Moderate Resolution Imaging Spectroradiometer fire counts in the southeastern U.S.. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 119(19), 11375-11386.

Multiple studies have developed surface PM2.5 (particle size less than 2.5 mu m in aerodynamic diameter) prediction models using satellite-derived aerosol optical depth as the primary predictor and meteorological and land use variables as secondary variables. To our knowledge, satellite-retrieved fire information has not been used for PM2.5 concentration prediction in statistical models. Fire data could be a useful predictor since fires are significant contributors of PM2.5. In this paper, we examined whether remotely sensed fire count data could improve PM2.5 prediction accuracy in the southeastern U. S. in a spatial statistical model setting. A sensitivity analysis showed that when the radius of the buffer zone centered at each PM2.5 monitoring site reached 75 km, fire count data generally have the greatest predictive power of PM2.5 across the models considered. Cross validation (CV) generated an R-2 of 0.69, a mean prediction error of 2.75 mu g/m(3), and root-mean-square prediction errors (RMSPEs) of 4.29 mu g/m(3), indicating a good fit between the dependent and predictor variables. A comparison showed that the prediction accuracy was improved more substantially from the nonfire model to the fire model at sites with higher fire counts. With increasing fire counts, CV RMSPE decreased by values up to 1.5 mu g/m(3), exhibiting a maximum improvement of 13.4% in prediction accuracy. Fire count data were shown to have better performance in southern Georgia and in the spring season due to higher fire occurrence. Our findings indicate that fire count data provide a measurable improvement in PM2.5 concentration estimation, especially in areas and seasons prone to fire events.