Publications

Lin, Jinyao; Liu, Xiaoping; Li, Kai; Li, Xia (2014). A maximum entropy method to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 35(18), 6708-6727.

Abstract
Researchers often encounter difficulties in obtaining timely and detailed information on urban growth. Modern remote-sensing techniques can address such difficulties. With desirable spectral resolution and temporal resolution, Moderate Resolution Imaging Spectroradiometer (MODIS) products have significant advantages in tackling land-use and land-cover change issues at regional and global scales. However, simply based on spectral information, traditional methods of remote-sensing image classification are barely satisfactory. For example, it is quite difficult to distinguish urban and bare lands. Moreover, training samples of all land-cover types are needed, which means that traditional classification methods are inefficient in one-class classification. Even support vector machine, a current state-of-the-art method, still has several drawbacks. To address the aforementioned problems, this study proposes extracting urban land by combining MODIS surface reflectance, MODIS normalized difference vegetation index (NDVI), and Defense Meteorological Satellite Program Operational Linescan System data based on the maximum entropy model (MAXENT). This model has been proved successful in solving one-class problems in many other fields. But the application of MAXENT in remote sensing remains rare. A combination of NDVI and Defense Meteorological Satellite Program Operational Linescan System data can provide more information to facilitate the one-class classification of MODIS images. A multi-temporal case study of China in 2000, 2005, and 2010 shows that this novel method performs effectively. Several validations demonstrate that the urban land extraction results are comparable to classified Landsat TM (Thematic Mapper) images. These results are also more reliable than those of MODIS land-cover type product (MCD12Q1). Thus, this study presents an innovative and practical method to extract urban land at large scale using multiple source data, which can be further applied to other periods and regions.

DOI:
10.1080/01431161.2014.960623

ISSN:
0143-1161