Publications

Kourtidis, K.; Rapsomanikis, S.; Zerefos, C.; Georgoulias, A. K.; Pavlidou, E. (2014). Severe particulate pollution from the deposition practices of the primary materials of a cement plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 21(16), 9796-9808.

Abstract
Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3-30.4 mg/m(3) total suspended particulates in the air and concentrations of particles with a diameter of 10 mu m or less at 0.04-3 mg/m(3). These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33 % decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.

DOI:
10.1007/s11356-014-2969-6

ISSN:
0944-1344