Publications

Ghisolfi, Renato David; da Silva, Meyre Pereira; dos Santos, Felipe Thomaz; Servino, Ricardo Nogueira; Cirano, Mauro; Thompson, Fabiano Lopes (2015). Physical Forcing Mechanisms Controlling the Variability of Chlorophyll-a over the Royal-Charlotte and Abrolhos Banks-Eastern Brazilian Shelf. PLOS ONE, 10(2), e0117082.

Abstract
The Abrolhos Bank is part of the so-called Eastern Brazilian Shelf and is an area of high ecological and economic importance. The bank supports the largest and richest coral reefs in the South Atlantic and the largest rhodolith bed in the world. The spatial and seasonal variation of phytoplankton concentration, however, and the dynamic processes controlling that variability have remained poorly known. The present study investigates the seasonal and spatial distributions of chlorophyll-a (Chl-a) and water conditions by analyzing nine years (2003-2011) of level-3 Moderate-resolution Imaging Spectroradiometer (MODIS) derived Chl-a, National Centers for Environmental Prediction (NCEP)/ETA model-derived winds, NCEP model-derived heat fluxes, thermohaline and velocity results from the Hybrid Circulation Ocean Model (HYCOM) 1/12 degrees assimilated simulation. The results show that low/high concentrations occurred in austral spring-summer (wet season)/autumn-winter (dry season), with the highest values observed in the northern portion of the Abrolhos Bank. The typical meteorological and oceanographic conditions during austral summer favor the development of strong stratification. These conditions are 1) N-NE winds that favor an upwelling-type Ekman circulation; 2) coupling between the open ocean and the continental shelf through the western boundary current, which promotes cooler subsurface water to rise onto the shelf break; and 3) positive net heat flux. In contrast, the S-SE winds during autumn are in the opposite direction of the predominant current system over the Abrolhos Bank, thus reducing their speed and inducing an inverse shear. The warmer ocean and a somewhat cool and dry atmosphere promote the evaporative cooling of the surface layer. The above processes drive mixed layer cooling and deepening that reaches its maximum in winter. The blooming of phytoplankton in the Abrolhos Bank waters appears to be regulated by changes in the mixed layer depth, with Chl-a levels that start to increase during autumn and reach their peak in June-July.

DOI:
10.1371/journal.pone.0117082

ISSN:
1932-6203