Publications

He, YJ; Sun, ZA; Shi, GP; Liu, JM; Li, JD (2017). Modification of the SUNFLUX solar radiation scheme with a new aerosol parameterization and its validation using observation network data. ADVANCES IN ATMOSPHERIC SCIENCES, 34(11), 1301-1315.

Abstract
SUNFLUX is a fast parameterization scheme for determination of the solar radiation at the Earth's surface. In this paper, SUNFLUX is further modified in the treatment of aerosols. A new aerosol parameterization scheme is developed for five aerosol species. Observational data from Baseline Surface Radiation Network (BSRN), Surface Radiation Budget Network (SURFRAD) and Aerosol Robotic Network (AERONET) stations are used to evaluate the accuracy of the original and modified SUNFLUX schemes. General meteorological data are available at SURFRAD stations, but not at BSRN stations. Therefore, the total precipitable water content and aerosol data are obtained from AERONET stations. Fourteen stations are selected from both BSRN and AERONET. Cloud fraction data from MODIS are further used to screen the cloud. Ten-year average aerosol mixing ratios simulated by the CAM-chem system are used to calculate the fractions of aerosol optical depth for each aerosol species, and these fractions are further used to convert the observed total aerosol optical depth into the components of individual species for use in the evaluations. The proper treatment of multiple aerosol types in the model is discussed. The evaluation results using SUNFLUX with the new aerosol scheme, in terms of the BSRN dataset, are better than those using the original aerosol scheme under clear-sky conditions. However, the results using the SURFRAD dataset are slightly worse, attributable to the differences in the input water vapor and aerosol optical depth. Sensitivity tests are conducted to investigate the error response of the SUNFLUX scheme to the errors in the input variables.

DOI:
10.1007/s00376-016-6262-0

ISSN:
0256-1530