Stehr, A; Aguayo, M (2017). Snow cover dynamics in Andean watersheds of Chile (32.0-39.5 degrees S) during the years 2000-2016. HYDROLOGY AND EARTH SYSTEM SCIENCES, 21(10), 5111-5126.
Abstract
Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25% of the territory between the region of Valparaiso and Araucana comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobio and Tolten) located in the Chilean Andes, between latitude 32.0 and 39.5 degrees S, and to analyse its relationship with the precipitation regime/pattern and El Nino-Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000-2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98% between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in southern-central Chile. Regarding SCD, no significant reduction in SCA for the period 2000-2016 was detected, with the exception of the Aconcagua and Rapel watersheds. In addition to that, an important decline in SCA in the five watersheds for the period of 2012 and 2016 was also evident, which is coincidental with the rainfall deficit for the same years. Findings were compared against ENSO episodes that occurred during 2010-2016, detecting that Nina years are coincident with maximum SCA during winter in all watersheds.
DOI:
10.5194/hess-21-5111-2017
ISSN:
1027-5606