He, XQ; Bai, Y; Wei, J; Ding, J; Shanmugam, P; Wang, DF; Song, QJ; Huang, XX (2017). Ocean color retrieval from MWI onboard the Tiangong-2 Space Lab: preliminary results. OPTICS EXPRESS, 25(20), 23955-23973.
Abstract
The Moderate-resolution Wide-wavelengths Imager (MWI) is the ocean color sensor onboard the Chinese Tiangong-2 Space Lab, which was launched on Sept. 15, 2016. The MWI is also an experimental satellite sensor for the Chinese next generation ocean color satellites, HY-1E and HY-1F, which are scheduled for launch around 2021. With 100m spatial resolution and 18 bands in the visible light and infrared wavelengths, MWI provides high quality ocean color observations especially over coastal and inland waters. For the first time, this study presents some important results on water color products generated from the MWI for the oceanic and inland waters. Preliminary validation in turbid coastal and inland waters showed good agreement between the MWI-retrieved normalized water-leaving radiances (Lwn) and in situ data. Further, the MWI-retrieved Lwn values compared well with the GOCI-retrieved Lwn values, with the correlation coefficient greater than 0.90 and mean relative differences smaller than 26.63% (413 nm), 4.72% (443 nm), 3.69% (490 nm), 7.15% (565 nm), 9.45% (665 nm), 8.11% (682.5 nm), 14.68% (750 nm) and 18.55% (865 nm). As for the Level 2 product (e.g, total suspended matter TSM) in turbid Yangtze River Estuary and Hangzhou Bay waters, the relative difference between MWI and GOCI-derived TSM values was similar to 18.59% with the correlation coefficient of 0.956. In open-oceanic waters, the retrieved MWI-Chla distributions were well consistent with the MODIS/Aqua and VIIRS Chla values products and resolved finer spatial structures of phytoplankton blooms. This study provides encouraging results for the MWI's performance and operational applications in oceanic and inland regions. (C) 2017 Optical Society of America
DOI:
10.1364/OE.25.023955
ISSN:
1094-4087