Publications

Cuchiara, GC; Rappengluck, B; Rubio, MA; Lissi, E; Gramsch, E; Garreaud, RD (2017). Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile. ATMOSPHERIC ENVIRONMENT, 166, 79-91.

Abstract
On January 4, 2014, during the summer period in South America, an intense forest and dry pasture wildfire occurred nearby the city of Santiago de Chile. On that day the biomass-burning plume was transported by low-intensity winds towards the metropolitan area of Santiago and impacted the concentration of pollutants in this region. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) is implemented to investigate the biomass-burning plume associated with these wildfires nearby Santiago, which impacted the ground-level ozone concentration and exacerbated Santiago's air quality. Meteorological variables simulated by WRF/Chem are compared against surface and radiosonde observations, and the results show that the model reproduces fairly well the observed wind speed, wind direction air temperature and relative humidity for the case studied. Based on an analysis of the transport of an inert tracer released over the locations, and at the time the wildfires were captured by the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS), the model reproduced reasonably well the transport of biomass burning plume towards the city of Santiago de Chile within a time delay of two hours as observed in ceilometer data. A six day air quality simulation was performed: the first three days were used to validate the anthropogenic and biogenic emissions, and the last three days (during and after the wildfire event) to analyze the performance of WRF/Chem plume-rise model within FINNv1 fire emission estimations. The model presented a satisfactory performance on the first days of the simulation when contrasted against data from the well established air quality network over the city of Santiago de Chile. These days represent the urban air quality base case for Santiago de Chile unimpacted by fire emissions. However, for the last three simulation days, which were impacted by the fire emissions, the statistical indices showed a decrease in the model performance. While the model showed a satisfactory evidence that wildfires plumes that originated in the vicinity of Santiago de Chile were transported towards the urban area and impacted the air quality, the model still underpredicted some pollutants substantially, likely due to misrepresentation of fire emission sources during those days. Potential uncertainties may include to the land use/land cover classifications and its characteristics, such as type and density of vegetation assigned to the region, where the fire spots are detected. The variability of the ecosystem type during the fire event might also play a role. (C) 2017 Elsevier Ltd. All rights reserved.

DOI:
10.1016/j.atmosenv.2017.07.002

ISSN:
1352-2310