Publications

Foster, CS; Crosman, ET; Horel, JD (2017). Simulations of a Cold-Air Pool in Utah's Salt Lake Valley: Sensitivity to Land Use and Snow Cover. BOUNDARY-LAYER METEOROLOGY, 164(1), 63-87.

Abstract
Obtaining realistic land-surface states for initial and boundary conditions is important for the numerical weather prediction of many atmospheric phenomena. Here we investigate model sensitivity to land use and snow cover for a persistent wintertime cold-air pool in northern Utah during 1-8 January 2011. A Weather Research and Forecast model simulation using the 1993 United States Geological Survey land-use and North American Mesoscale model reanalysis snow-cover datasets is compared to an improved configuration using the modified 2011 National Land Cover Database and a more realistic representation of snow cover. The improved surface specification results in an increase (decrease) in urban land cover (Great Salt Lake surface area), and changes to the snow-cover initialization, depth, extent, and albedo. The results obtained from the model simulations are compared to observations collected during the Persistent Cold-Air Pool Study. The changes in land use and snow cover and the resulting impacts on the surface albedo and surface heat fluxes contributed to near-surface air temperature increases of 1-2 degrees C in urban areas and decreases of 2-4 degrees C in areas surrounding the Great Salt Lake. Although wind speeds in the boundary layer were overestimated in both simulations, shallow thermally-driven and terrain-forced flows were generally lessened in intensity and breadth in response to the decreased areal extent of the Great Salt Lake and increases in the urban footprint.

DOI:
10.1007/s10546-017-0240-7

ISSN:
Jun-14