Publications

Lu, JZ; Chen, XL; Zhang, P; Huang, J (2017). Evaluation of spatiotemporal differences in suspended sediment concentration derived from remote sensing and numerical simulation for coastal waters. JOURNAL OF COASTAL CONSERVATION, 21(1), 197-207.

Abstract
Remote sensing and numerical models are often used to monitor the suspended sediment concentration (SSC) in coastal waters; however, the derived SSC varies between the two methods in both space and time. In this study, a method was proposed to assess the spatiotemporal differences in SSC derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images and numerical simulation for coastal waters, using the Bohai Sea in China as an example. An empirical model for SSC retrieval from remote sensed images was initially established. A comparison of the temporal synchronicity over a single day period was performed between the observed data and the numerically simulated results. The range in the SSC at different observation sites was significantly different. Both the SSC values and their daily variation ranges were larger near the estuary of the Yellow River compared with the open area due to the concurrence of tidal flow and the introduction of fresh river water with high turbidity near the estuary. The areas that exhibited spatial differences were defined according to their differences in remotely sensed and numerically simulated SSC distribution patterns. Finally, the reasons for these spatiotemporal differences were discussed. The results provided understanding into the spatiotemporal differences that were introduced when multi-source data were used, thus improving the accuracy of the results when monitoring coastal environments for the management of coastal conservation.

DOI:
10.1007/s11852-016-0491-3

ISSN:
1400-0350