Publications

Yu, LL; Su, JH; Li, C; Wang, L; Luo, Z; Yan, BP (2018). Improvement of Moderate Resolution Land Use and Land Cover Classification by Introducing Adjacent Region Features. REMOTE SENSING, 10(3), 414.

Abstract
Landsat-like moderate resolution remote sensing images are widely used in land use and land cover (LULC) classification. Limited by coarser resolutions, most of the traditional LULC classifications that are based on moderate resolution remote sensing images focus on the spectral features of a single pixel. Inspired by the spatial evaluation methods in landscape ecology, this study proposed a new method to extract neighborhood characteristics around a pixel for moderate resolution images. 3 landscape-metric-like indexes, i.e., mean index, standard deviation index, and distance weighted value index, were defined as adjacent region features to include the surrounding environmental characteristics. The effects of the adjacent region features and the different feature set configurations on improving the LULC classification were evaluated by a series of well-controlled LULC classification experiments using K nearest neighbor (KNN) and support vector machine (SVM) classifiers on a Landsat 8 Operational Land Imager (OLI) image. When the adjacent region features were added, the overall accuracies of both the classifiers were higher than when only spectral features were used. For the KNN and SVM classifiers that used only spectral features, the overall accuracies of the LULC classification were 85.45% and 88.87%, respectively, and the accuracies were improved to 94.52% and 96.97%. The classification accuracies of all the LULC types improved. Highly heterogeneous LULC types that are easily misclassified achieved greater improvements. As comparisons, the grey-level co-occurrence matrix (GLCM) and convolutional neural network (CNN) approaches were also implemented on the same dataset. The results revealed that the new method outperformed GLCM and CNN approaches and can significantly improve the classification performance that is based on moderate resolution data.

DOI:
10.3390/rs10030414

ISSN:
2072-4292