Publications

An, S; Zhang, XY; Chen, XQ; Yan, D; Henebry, GM (2018). An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai-Tibet Plateau Using Landsat ETM plus and OLI Data. REMOTE SENSING, 10(7), 1069.

Abstract
Detecting spatial patterns of land surface phenology (LSP) with high spatial and temporal resolutions is crucial for accurately estimating phenological response and feedback to climate change and biogeochemical cycles. Numerous studies have revealed LSP across the Qinghai-Tibet Plateau (QTP) using a variety of coarse-resolution satellite data. However, detailed phenological spatial patterns along with changes of mountain topography remain poorly understood, which greatly limits efforts to predict the impacts of climate change on vegetation growth and ecosystem productivity in complex terrain regions. Combining Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat 8 OLI (Operational Land Imager) observations in overlapping zones of adjacent images, this study detected Normalized Difference Vegetation Index (NDVI)-based LSP metrics at a spatial resolution of 30 m, and explored how LSP varied with topographic factors along a 2600 km belt transect of the central QTP. The results show that the greenup onset date showed a delayed tendency with the increase of elevation at a mean rate of 1.52 days/100 m, while the dormancy onset date indicated an advanced tendency at a mean rate of -0.59 days/100 m. In general, greenup onset date was later but dormancy onset date was earlier on shaded slopes than on sunlit slopes in the meadow area. By contrast, greenup onset date did not significantly depend on aspect in the steppe area, while dormancy onset date indicated a similar response to aspect in the steppe area with that in the meadow area. With regard to the effect of slope on vegetation phenology in the meadow area, greenup onset date was significantly delayed but dormancy onset date significantly advanced with the increase of slope on both north and south slopes. In the steppe area, however, the influence pattern of slope on vegetation phenology was the opposite. Essentially, effects of topographical parameters on LSP were controlled by temperature and moisture combinations in complex terrain.

DOI:
10.3390/rs10071069

ISSN:
2072-4292