Zhou, Y; Zhao, F; Wang, SX; Liu, WL; Wang, LT (2018). A Method for Monitoring Iron and Steel Factory Economic Activity Based on Satellites. SUSTAINABILITY, 10(6), 1935.
Abstract
The Chinese government has promulgated a de-capacity policy for economic growth and environmental sustainability, especially for the iron and steel industry. With these policies, this study aimed to monitor the economic activities and evaluate the production conditions of an iron and steel factory based on satellites via Landsat-8 Thermal Infrared Sensor (TIRS) data and high-resolution images from January 2013 to October 2017, and propel next economic adjustment and environmental protection. Our methods included the construction of a heat island intensity index for an iron and steel factory (ISHII), a heat island radio index for an iron and steel factory (ISHRI) and a dense classifying approach to monitor the spatiotemporal changes of the internal heat field of an iron and steel factory. Additionally, we used GF-2 and Google Earth images to identify the main production area, detect facility changes to a factory that alters its heat field and verify the accuracy of thermal analysis in a specific time span. Finally, these methods were used together to evaluate economic activity. Based on five iron and steel factories in the Beijing-Tianjin-Hebei region, when the ISHII curve is higher than the seasonal changes in a time series, production is normal; otherwise, there is a shut-down or cut-back. In the spatial pattern analyses, the ISHRI is large in normal production and decreases when cut-back or shut-down occurs. The density classifying images and high-resolution images give powerful evidence to the above-mentioned results. Finally, three types of economic activities of normal production, shut-down or cut-back were monitored for these samples. The study provides a new perspective and method for monitoring the economic activity of an iron and steel factory and provides supports for sustainable development in China.
DOI:
10.3390/su10061935
ISSN:
2071-1050