Publications

Ren, JL; Zheng, ZB; Li, YM; Lv, GN; Wang, Q; Lyu, H; Huang, CC; Liu, G; Du, CG; Mu, M; Lei, SH; Bi, S (2018). Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. SCIENCE OF THE TOTAL ENVIRONMENT, 625, 1554-1566.

Abstract
The Secchi disk depth (ZsD) plays a critical role in describing water clarity. Several studies have shown linkages between Three Gorges Dam (TGD) and the downstream lacustrine ecosystem in the middle and lower Yangtze River basin. However, the potential influence on the Zsr, fluctuation in the entire anthropogenic reservoirs of Three Gorges (ER) and Dongting Lake (DTL) has not been reported, possibly due to technical obstacles in obtaining statistically significant spatial and temporal results. We addressed this challenge by using remote sensing technology: the Landsat S Operational Land Imager (OLI) We proposed a new, robust remote-sensing algorithm to estimate Zsr, from OLI imagery using red and green band-ratio, leading to MAPE of 21.68% and RMSE of 0.076 m for Z50 ranging from 0.1 m to 1.05 nt After satisfactory image-based validation, the algorithm was implemented on OLI data to derive Z(sD) patterns over ER and DTL from 2013 to 2017. Several crucial findings can be drawn: 1) Spatial-temporal patterns of Z(sD) exhibited notable fluctuations over both ER and DTL, and they also demonstrated a significant correlation with each other because of the opposite temporal cycle of Zs0 fluctuations between ER and DTL; 2) Temporally, monthly fluctuations of Z50 between ER and DTL had opposite temporal cycles, which was mainly attributed to the surface runoff and sediment discharge driven by the outbound runoff variations of TGD. Spatially, the heterogeneity of the Z(sD) pattern in ER might have resulted from the different geographical regions being divided by large anthropologic hydrological facilities, such as TGD; 3) The relationship between ZsD and total suspended matter (TSM) showed a significant negative correlation, as did the relationship between ZsD and Kd(490). These findings demonstrate that TSM often plays a principal role in light attenuation of extremely turbid inland waters; 4) An inversed phenomenon of water clarity was observed at the intersection of DTL and the Yangtze River around Chenglingji site (YRAC), which was due to the opposite temporal cycle of ZsD fluctuations between DTL and ER after the impoundment of TGD; and 5) Owing to the analysis of noise-equivalent Z(sD), OLI data can be used to derive Z(sD), since the imagery uncertainty is 0.07 m by means of our band-ratio algorithm, which demonstrates similar results to MODIS. The proposed 40-derived algorithm in this study could be suitable for other turbid lakes or reservoirs to formulate related strategies of water quality management in the middle and lower Yangtze River basin, and the unveiled findings here improve our understanding of ZsD spatiotemporal fluctuations in large river-connected lakes, such as Poyang Lake. (C) 2018 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.scitotenv.2018.01.036

ISSN:
0048-9697