Publications

Yao, ZG; Li, J; Zhao, ZL; Zhu, L; Qi, J; Che, HZ (2019). Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method. REMOTE SENSING, 11(24), 2931.

Abstract
Two back-propagation artificial neural network retrieval models have been developed for obtaining the dust aerosol optical depth (AOD) and dust-top height (DTH), respectively, from Atmospheric InfraRed Sounder (AIRS) brightness temperature (BT) measurements over Taklimakan Desert area. China Aerosol Remote Sensing Network (CARSNET) measurements at Tazhong station were used for dust AOD validation. Results show that the correlation coefficient of dust AODs between AIRS and CARSNET reaches 0.88 with a deviation of -0.21, which is the same correlation coefficient as the AIRS dust AOD and the Moderate-Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) product. In the AIRS DTH retrieval model, there is an option to include the collocated MODIS deep blue (DB) AOD as additional input for daytime retrieval; the independent dust heights from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used for AIRS DTH validation, and results show that the DTHs derived from the combined AIRS BT measurements and MODIS DB AOD product have better accuracy than those from AIRS BT measurements alone. The correlation coefficient of DTHs between AIRS and independent CALIOP dust heights is 0.79 with a standard deviation of 0.41 km when MODIS DB AOD product is included in the retrieval model. A series of case studies from different seasons were examined to demonstrate the feasibility of retrieving dust parameters from AIRS and potential applications. The method and approaches can be applied to process measurements from advanced infrared (IR) sounder and high-resolution imager onboard the same platform.

DOI:
10.3390/rs11242931

ISSN: