Publications

Xu, J; Yao, YJ; Tan, KR; Li, YF; Liu, SM; Shang, K; Jia, K; Zhang, XT; Chen, XW; Bei, XY (2019). Integrating Latent Heat Flux Products from MODIS and Landsat Data Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe River Basin of Northwest China. REMOTE SENSING, 11(15), 1787.

Abstract
An accurate and spatially continuous estimation of terrestrial latent heat flux (LE) is crucial to the management and planning of water resources for arid and semi-arid areas, for which LE estimations from different satellite sensors unfortunately often contain data gaps and are inconsistent. Many integration approaches have been implemented to overcome these limitations; however, most suffer from either the persistent bias of relying on datasets at only one resolution or the spatiotemporal inconsistency of LE products. In this study, we exhibit an integration case in the midstream of the Heihe River Basin of northwest China by using a multi-resolution Kalman filter (MKF) method to develop continuous and consistent LE maps from satellite LE datasets across different resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16), the Landsat-based LE product derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor, and ground observations of eddy covariance flux tower from June to September 2012 are used. The integrated results illustrate that data gaps of MOD16 dropped to less than 0.4% from the original 27-52%, and the root-mean-square error (RMSE) between the LE products decreased by 50.7% on average. Our findings indicate that the MKF method has excellent capacity to fill data gaps, reduce uncertainty, and improve the consistency of multiple LE datasets at different resolutions.

DOI:
10.3390/rs11151787

ISSN: