Publications

Zong, JM; Wang, XX; Zhong, QY; Xiao, XM; Ma, J; Zhao, B (2019). Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle-Lower Yangtze River Basin. REMOTE SENSING, 11(15), 1754.

Abstract
In recent decades, the increasing frequency and severity of cyanobacterial blooms in recreational lakes and water supply reservoirs have become a great concern to public health and a significant threat to the environment. Cyanobacterial bloom monitoring is the basis of early warning and treatment. Previous research efforts have always focused on monitoring blooms in a few specific lakes in China using moderate resolution imaging spectroradiometer (MODIS) images, which are available for the years 2000 onward. However, the lack of overall information on long-term cyanobacterial blooms in the lakes and reservoirs in the middle-lower Yangtze River (MLYR) basin is an obstacle to better understanding the dynamics of cyanobacterial blooms at a watershed scale. In this study, we extracted the yearly coverage area and frequency of cyanobacterial blooms that occurred from 1990 to 2016 in 30 large lakes and 10 reservoirs (inundation area >50 km(2)) by using time series Landsat satellite images from Google Earth Engine (GEE). Then, we calculated the cyanobacterial bloom area percentage (CAP) and the cyanobacterial bloom frequency index (CFI) and analyzed their inter-annual variation and trends. We also investigated the main driving forces of changes in the CAP and CFI in each lake and reservoir. We found that all reservoirs and more than 60% of lakes exhibited an increasing frequency and coverage area of cyanobacterial blooms under the pressures of climate change and anthropogenic interferences. Reservoirs were more prone to be affected by fertilizer consumption from their regional surroundings than lakes. High temperatures increased blooms of cyanobacteria, while precipitation in the lake and reservoir regions somewhat alleviated blooms. This study completes the data records of cyanobacterial blooms in large lakes and reservoirs located in hotspots of the MLYR basin and provides more baseline information before 2000, which will present references for water resource management and freshwater conservation.

DOI:
10.3390/rs11151754

ISSN: