Nguyen, LH; Henebry, GM (2019). Characterizing Land Use/Land Cover Using Multi-Sensor Time Series from the Perspective of Land Surface Phenology. REMOTE SENSING, 11(14), 1677.
Abstract
Due to a rapid increase in accessible Earth observation data coupled with high computing and storage capabilities, multiple efforts over the past few years have aimed to map land use/land cover using image time series with promising outcomes. Here, we evaluate the comparative performance of alternative land cover classifications generated by using only (1) phenological metrics derived from either of two land surface phenology models, or (2) a suite of spectral band percentiles and normalized ratios (spectral variables), or (3) a combination of phenological metrics and spectral variables. First, several annual time series of remotely sensed data were assembled: Accumulated growing degree-days (AGDD) from the MODerate resolution Imaging Spectroradiometer (MODIS) 8-day land surface temperature products, 2-band Enhanced Vegetation Index (EVI2), and the spectral variables from the Harmonized Landsat Sentinel-2, as well as from the U.S. Landsat Analysis Ready Data surface reflectance products. Then, at each pixel, EVI2 time series were fitted using two different land surface phenology models: The Convex Quadratic model (CxQ), in which EVI2 = f(AGDD) and the Hybrid Piecewise Logistic Model (HPLM), in which EVI2 = f(day of year). Phenometrics and spectral variables were submitted separately and together to Random Forest Classifiers (RFC) to depict land use/land cover in Roberts County, South Dakota. HPLM RFC models showed slightly better accuracy than CxQ RFC models (about 1% relative higher in overall accuracy). Compared to phenometrically-based RFC models, spectrally-based RFC models yielded more accurate land cover maps, especially for non-crop cover types. However, the RFC models built from spectral variables could not accurately classify the wheat class, which contained mostly spring wheat with some fields in durum or winter varieties. The most accurate RFC models were obtained when using both phenometrics and spectral variables as inputs. The combined-variable RFC models overcame weaknesses of both phenometrically-based classification (low accuracy for non-vegetated covers) and spectrally-based classification (low accuracy for wheat). The analysis of important variables indicated that land cover classification for this study area was strongly driven by variables related to the initial green-up phase of seasonal growth and maximum fitted EVI2. For a deeper evaluation of RFC performance, RFC classifications were also executed with several alternative sampling scenarios, including different spatiotemporal filters to improve accuracy of sample pools and different sample sizes. Results indicated that a sample pool with less filtering yielded the most accurate predicted land cover map and a stratified random sample dataset covering approximately 0.25% or more of the study area were required to achieve an accurate land cover map. In case of data scarcity, a smaller dataset might be acceptable, but should not smaller than 0.05% of the study area.
DOI:
10.3390/rs11141677
ISSN:
2072-4292