Li, W; Ni, L; Li, ZL; Duan, SB; Wu, H (2019). Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 12(7), 2299-2307.
Abstract
Land surface temperature (LST) is described as one of the most important environmental parameters of the land surface biophysical process. Commonly, the remote-sensed LST products yield a tradeoff between high temporal and high spatial resolution. Thus, many downscaling algorithms have been proposed to address this issue. Recently, downscaling with machine learning algorithms, including artificial neural networks (ANNs), support vector machine (SVM), and random forest (RF), etc., have gained more recognition with fast operation and high computing precision. This paper intends to make a comparison between machine learning algorithms to downscale the LST product of the moderate-resolution imaging spectroradiometer from 990 to 90 m, and downscaling results would be validated by the resampled LST product of the advanced spaceborne thermal emission and reflection radiometer. The results are further compared with the classical algorithm-thermal sharpening algorithm (TsHARP), using images derived from two representatives kind of areas of Beijing city. The result shows that: 1) all machine learning algorithms produce higher accuracy than TsHARP; 2) the performance of TsHARP on urban area is unsatisfactory than rural because of the weak indication of impervious surface by normalized difference vegetation index, however, machine learning algorithms get the desired results on both two areas, in which ANN and RF models perform well with high accuracy and fast arithmetic, SVM also gets a good result but there is a smoothing effect on land surface; and 3) additionally, machine learning algorithms are promising to achieve a universal framework which can downscale LST for any area within the training data from long spatiotemporal sequences.
DOI:
10.1109/JSTARS.2019.2896923
ISSN:
1939-1404