Publications

Long, YN; Tang, R; Wu, CS; Jiang, CB; Hu, SX (2019). Estimating Real-Time Water Area of Dongting Lake Using Water Level Information. WATER, 11(6).

Abstract
Dongting Lake, the second largest freshwater lake in China, is an important water source for the Yangtze River Basin. The water area of Dongting Lake fluctuates significantly daily, which may cause flooding and other relevant disasters. Although remote sensing techniques may provide lake area estimates with reasonable accuracy, they are not available in real-time and may be susceptible to weather conditions. To address this issue, this paper attempted to examine the relationship between lake area and the water levels at the hydrological stations. Multi-temporal water area data were derived through analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) imagery using the Automatic Water Extraction Index (AWEI). Then we analyzed the inter- and intra-annual variations in the water area of the Dongting Lake. Corresponding water level information at hydrological stations of the Dongting Lake were obtained. Simple linear regression (SLR) models and stepwise multiple linear regression (SMLR) models were constructed using water levels and water level differences from the upstream and downstream hydrological stations. We used the data from 2004 to 2012 and 2012, respectively, to build the model, and applied the data from 2013 to 2015 to evaluate the models. Results suggest that the maximum water area of the Dongting Lake during 2000-2015 has a clear decreasing trend. The variations in the water area were characterized by hydrological seasons, with the annual minimum and maximum water areas occurring in January and September, respectively. The water level at the Chengjingji station, and water level differences between upstream stations and the Chengjingji station, play a major role in estimating the water area. Further, results also show that the SMLR established in 2012 performs the best in estimating water area of the Dongting Lake, especially with high water levels.

DOI:
10.3390/w11061240

ISSN:
2073-4441