Richardson, M; Leinonen, J; Cronk, HQ; McDuffie, J; Lebsock, MD; Stephens, GL (2019). Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer. ATMOSPHERIC MEASUREMENT TECHNIQUES, 12(3), 1717-1737.
Abstract
This paper introduces the OCO2CLD-LIDAR-AUX product, which uses the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar and the Orbiting Carbon Observatory-2 (OCO-2) hyperspectral A-band spectrometer. CALIPSO provides a prior cloud top pressure (P-top) for an OCO-2-based retrieval of cloud optical depth, P-top and cloud geometric thickness expressed in hPa. Measurements are of single-layer liquid clouds over oceans from September 2014 to December 2016 when collocated data are available. Retrieval performance is best for solar zenith angles <45 degrees and when the cloud phase classification, which also uses OCO-2's weak CO2 band, is more confident. The highest quality optical depth retrievals agree with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) with discrepancies smaller than the MODIS-reported uncertainty. Retrieved thicknesses are consistent with a substantially subadiabatic structure over marine stratocumulus regions, in which extinction is weighted towards the cloud top. Cloud top pressure in these clouds shows a 4 hPa bias compared with CALIPSO which we attribute mainly to the assumed vertical structure of cloud extinction after showing little sensitivity to the presence of CALIPSO-identified aerosol layers or assumed cloud droplet effective radius. This is the first case of success in obtaining internal cloud structure from hyperspectral A-band measurements and exploits otherwise unused OCO-2 data. This retrieval approach should provide additional constraints on satellite-based estimates of cloud droplet number concentration from visible imagery, which rely on parameterization of the cloud thickness.
DOI:
10.5194/amt-12-1717-2019
ISSN:
1867-1381