Zhai, XH; Liang, XL; Yan, CZ; Xing, XG; Jia, HW; Wei, XX; Feng, K (2020). Vegetation Dynamic Changes and Their Response to Ecological Engineering in the Sanjiangyuan Region of China. REMOTE SENSING, 12(24), 4035.

In recent decades, the vegetation of the Sanjiangyuan region has undergone a series of changes under the influence of climate change, and ecological restoration projects have been implemented. In this paper, we analyze the spatiotemporal dynamics of vegetation in this region using the satellite-retrieved normalized difference vegetation index (NDVI) from the global inventory modeling and mapping studies (GIMMS) and moderate resolution imaging and spectroradiometer (MODIS) datasets during the past 34 years. Specifically, the characteristics of vegetation changes were analyzed according to the stage of implementation of different ecological engineering programs. The results are as follows. (1) The vegetation in 65.6% of the study area exhibited an upward trend, and in 53.0% of the area, it displayed a large increase, which was mainly distributed in the eastern part of the study area. (2) The vegetation NDVI increased to differing degrees during stages of ecological engineering. (3) The NDVI in the western part of the Sanjiangyuan region is mainly affected by temperature, while in the northeastern part, the NDVI is affected more by precipitation. In the southern part, however, vegetation growth is affected neither by temperature nor by precipitation. On the whole region, vegetation growing is more affected by temperature than by precipitation. (4) The impacts of human activities on vegetation change are both positive and negative. In recent years, ecological engineering projects have had a positive impact on vegetation growth. This study can help us to correctly understand the impact of climate change on vegetation growth, so as to provide a scientific basis for the evaluation of regional ecological engineering effectiveness and the formulation of ecological protection policies.