Yang, XG; Liu, YQ; Wu, ZC; Yu, Y; Li, FR; Fan, WY (2020). Forest age mapping based on multiple-resource remote sensing data. ENVIRONMENTAL MONITORING AND ASSESSMENT, 192(11), 734.

Forest age is an important stand description factor and plays an important role in the carbon cycle of forest ecosystems. However, forest age data are typically lacking or are difficult to acquire at large spatial scale. Thus, it is important to develop a method of spatial forest age mapping. In this study, a method of forest age estimation based on multiple-resource remote sensing data was developed. Forest age was estimated by using average tree height estimated from the ICESat/GLAS and MODIS BRDF products. The results showed that forest age was significantly related to average tree height with a correlation coefficient of 0.752. Then, the average tree height was inversed using a waveform parameter extracted from ICESat/GLAS and was extended to continuous space with the help of the MODIS BRDF product. Thus, forest age mapping was realized. Lastly, the structure of forest age in the study area was evaluated. The results indicated that this method can be used to estimate forest age at the local scale and at large scale and can facilitate understandings of the real forest age structure features of a research area.