Publications

Scarino, BR; Bedka, K; Bhatt, R; Khlopenkov, K; Doelling, DR; Smith, WL (2020). A kernel-driven BRDF model to inform satellite-derived visible anvil cloud detection. ATMOSPHERIC MEASUREMENT TECHNIQUES, 13(10), 5491-5511.

Abstract
Satellites routinely observe deep convective clouds across the world. The cirrus outflow from deep convection, commonly referred to as anvil cloud, has a ubiquitous appearance in visible and infrared (IR) wavelength imagery. Anvil clouds appear as broad areas of highly reflective and cold pixels relative to the darker and warmer clear sky background, often with embedded textured and colder pixels that indicate updrafts and gravity waves. These characteristics would suggest that creating automated anvil cloud detection products useful for weather forecasting and research should be straightforward, yet in practice such product development can be challenging. Some anvil detection methods have used reflectance or temperature thresholding, but anvil reflectance varies significantly throughout a day as a function of combined solar illumination and satellite viewing geometry, and anvil cloud top temperature varies as a function of convective equilibrium level and tropopause height. This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles, thereby addressing limitations of previous methods. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function (BRDF) model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angle configurations, in addition to the reflectance uncertainty for each angular bin. Application of the BRDF model for cloud optical depth retrieval in deep convection is described as well.

DOI:
10.5194/amt-13-5491-2020

ISSN:
1867-1381