Francini, S; McRoberts, RE; Giannetti, F; Mencucci, M; Marchetti, M; Mugnozza, GS; Chirici, G (2020). Near-real time forest change detection using PlanetScope imagery. EUROPEAN JOURNAL OF REMOTE SENSING, 53(1), 233-244.

To combat global deforestation, monitoring forest disturbances at sub-annual scales is a key challenge. For this purpose, the new Planetscope nano-satellite constellation is a game changer, with a revisit time of 1 day and a pixel size of 3-m. We present a near-real time forest disturbance alert system based on PlanetScope imagery: the Thresholding Rewards and Penances algorithm (TRP). It produces a new forest change map as soon as a new PlanetScope image is acquired. To calibrate and validate TRP, a reference set was constructed as a complete census of five randomly selected study areas in Tuscany, Italy. We processed 572 PlanetScope images acquired between 1 May 2018 and 5 July 2019. TRP was used to construct forest change maps during the study period for which the final user's accuracy was 86% and the final producer's accuracy was 92%. In addition, we estimated the forest change area using an unbiased stratified estimator that can be used with a small sample of reference data. The 95% confidence interval for the sample-based estimate of 56.89 ha included the census-based area estimate of 56.19 ha.