Yu, R (2020). An improved estimation of net primary productivity of grassland in the Qinghai-Tibet region using light use efficiency with vegetation photosynthesis model. ECOLOGICAL MODELLING, 431, 109121.

Accurate estimation of grassland Net Primary Productivity (NPP) is one of the most important steps in monitoring and further analysing the status of the grassland ecosystem. However, the quality of regional or even global grassland NPP estimations are commonly limbed by the two most important input datasets: Photosynthetic Active Radiation (PAR) and climatic data, which make the NPP estimate unrepresentative or even inaccurate. This paper uses a Light Use Efficiency with Vegetation Photosynthesis Model (LUE-VPM) to estimate the high-quality grassland NPP in Zeku. By using the PAR data derived from high resolution DEM products and the improved land surface temperature data, the NPP produced by LUE-VPM shows that it is statistically the same as in situ converted NPP with a p-value of t-test equalling 0.90 (the RMSE between the two is 97.77 gC/m(2)), while MODIS NPP in Zeku is statically different from the all the in-situ sampling results with a p-value of t-text smaller than 0.03. The results of this paper provided a better estimate than MODIS NPP, and LUE-VPM can be used for the high-quality regional grassland NPP estimation when the quality of PAR data and climatic data improved.