Lu, H; Fan, TX; Ghimire, P; Deng, L (2020). Experimental Evaluation and Consistency Comparison of UAV Multispectral Minisensors. REMOTE SENSING, 12(16), 2542.

In recent years, the use of unmanned aerial vehicles (UAVs) has received increasing attention in remote sensing, vegetation monitoring, vegetation index (VI) mapping, precision agriculture, etc. It has many advantages, such as high spatial resolution, instant information acquisition, convenient operation, high maneuverability, freedom from cloud interference, and low cost. Nowadays, different types of UAV-based multispectral minisensors are used to obtain either surface reflectance or digital number (DN) values. Both the reflectance and DN values can be used to calculate VIs. The consistency and accuracy of spectral data and VIs obtained from these sensors have important application value. In this research, we analyzed the earth observation capabilities of the Parrot Sequoia (Sequoia) and DJI Phantom 4 Multispectral (P4M) sensors using different combinations of correlation coefficients and accuracy assessments. The research method was mainly focused on three aspects: (1) consistency of spectral values, (2) consistency of VI products, and (3) accuracy of normalized difference vegetation index (NDVI). UAV images in different resolutions were collected using these sensors, and ground points with reflectance values were recorded using an Analytical Spectral Devices handheld spectroradiometer (ASD). The average spectral values and VIs of those sensors were compared using different regions of interest (ROIs). Similarly, the NDVI products of those sensors were compared with ground point NDVI (ASD-NDVI). The results show that Sequoia and P4M are highly correlated in the green, red, red edge, and near-infrared bands (correlation coefficient (R-2) > 0.90). The results also show that Sequoia and P4M are highly correlated in different VIs; among them, NDVI has the highest correlation (R-2> 0.98). In comparison with ground point NDVI (ASD-NDVI), the NDVI products obtained by both of these sensors have good accuracy (Sequoia: root-mean-square error (RMSE) < 0.07; P4M: RMSE < 0.09). This shows that the performance of different sensors can be evaluated from the consistency of spectral values, consistency of VI products, and accuracy of VIs. It is also shown that different UAV multispectral minisensors can have similar performances even though they have different spectral response functions. The findings of this study could be a good framework for analyzing the interoperability of different sensors for vegetation change analysis.