Shen, WJ; He, JY; Huang, CQ; Li, MS (2020). Quantifying the Actual Impacts of Forest Cover Change on Surface Temperature in Guangdong, China. REMOTE SENSING, 12(15), 2354.

Forest cover change is critical in the regulation of global and regional climate change through the alteration of biophysical features across the Earth's surface. The accurate assessment of forest cover change can improve our understanding of its roles in the regulation processes of surface temperature. In spite of this, few researchers have attempted to discern the varying effects of multiple satellite-derived forest changes on local surface temperatures. In this study, we quantified the actual contributions of forest loss and gain associated with evapotranspiration (ET) and albedo to local surface temperature in Guangdong Province, China using an improved spatiotemporal change pattern analysis method, and explored the interrelationships between surface temperature and air temperature change. We specifically developed three forest change products for Guangdong, combining satellite observations from Landsat, PALSAR, and MODIS for comparison. Our results revealed that the adjusted simple change detection (SCD)-based Landsat/PALSAR forest cover data performed relatively well. We found that forest loss and gain between 2000 and 2010 had opposite effects on land surface temperature (LST), ET, and albedo. Forest gain led to a cooling of -0.12 +/- 0.01 degrees C, while forest loss led to a warming of 0.07 +/- 0.01 degrees C, which were opposite to the anomalous change of air temperature. A reduced warming to a considerable cooling was estimated due to the forest gain and loss across latitudes. Specifically, mid-subtropical forest gains increased LST by 0.25 +/- 0.01 degrees C, while tropical forest loss decreased LST by -0.16 +/- 0.05 degrees C, which can demonstrate the local differences in an overall cooling. ET induced cooling and warming effects were appropriate for most forest gain and loss. Meanwhile, the nearby temperature changes caused by no-change land cover types more or less canceled out some of the warming and cooling. Albedo exhibited negligible and complex impacts. The other two products (i.e., the GlobeLand30 and MCD12Q1) affect the magnitude of temperature response due to the discrepancies in forest definition, methodology, and data resolution. This study highlights the non-negligible contributions of high-resolution maps and a robust temperature response model in the quantification of the extent to which forest gain reverses the climate effects of forest loss under global warming.