Yu, SN; Zhang, XK; Zhang, XL; Liu, HJ; Qi, JG; Sun, YK (2020). Detecting and Assessing Nondominant Farmland Area with Long-Term MODIS Time Series Images. REMOTE SENSING, 12(15), 2441.

While most land use and land cover (LULC) studies have focused on modeling, change detection and driving forces at the class or categorical level, few have focused on the subclass level, especially regarding the quality change within a class such as farmland. The concept of nondominant farmland area (NAF) is proposed in this study to assess within class variability and quantify farmland areas where poor environmental conditions, unsuitable natural factors, natural disasters or unsustainable management practices lead to poor crop growth and thus low yield. A 17-year (2000-2016) time series of the Normalized Difference Vegetation Index (NDVI) was used to develop a NAF extraction model with abnormal features in the NDVI curves and subsequently applied to Heilongjiang province in China. The NAF model was analyzed and assessed from three aspects: agricultural disasters, soil types and medium- and low-yield fields, to determine dominant factors of the NAF patterns. The results suggested that: (1) the NAF model was able to extract a variety of NAF types with an overall accuracy of similar to 80%. The NAF area accumulated more than 8 years in 17 years is 6.20 thousand km(2) in Heilongjiang Province, accounting for 3.75% of the total cultivated land area; (2) the NAF had significant spatial clustering characteristics and temporal variability. 53.24% of the NAF accumulated more than 8 years in 17 years is mainly concentrated in the west of Heilongjiang Province. The inter-annual NAF variability was related with meteorological variations, topography and soil properties; and (3) the spatial and temporal NAF patterns seem to reflect a cumulative impact of meteorological disasters, poor farmland quality, and soil degradation on crop growth. The determinant factors of the observed NAF patterns differed across regions, and must be interpreted in the local context of topography, soil properties and meteorological environment. Spatial and temporal NAF variability could provide useful, diagnostic information for precision farmland management.