Goldberg, MD; Li, SM; Lindsey, DT; Sjoberg, W; Zhou, LH; Sun, DL (2020). Mapping, Monitoring, and Prediction of Floods Due to Ice Jam and Snowmelt with Operational Weather Satellites. REMOTE SENSING, 12(11), 1865.
Abstract
Among all the natural hazards throughout the world, floods occur most frequently. They occur in high latitude regions, such as: 82% of the area of North America; most of Russia; Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams may happen during the spring breakup season. The Northeast and North Central region, and some areas of the western United States, are especially harmed by floods due to ice jams and snowmelt. In this study, observations from operational satellites are used to map and monitor floods due to ice jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites, like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land. Water fraction can provide more information and can be estimated through mixed-pixel decomposition. The flood map can be derived from the water fraction difference after and before flooding. In high latitude areas, while conventional observations are usually sparse, multiple observations can be available from polar-orbiting satellites during a single day, and river forecasters can observe ice movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that they include not only normal flood type, but also a special flood type as the supra-snow/ice flood, and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring and prediction of floods due to ice jams and snowmelt for wide-end users.
DOI:
10.3390/rs12111865
ISSN: