Baig, MHA; Abid, M; Khan, MR; Jiao, WZ; Amin, M; Adnan, S (2020). Assessing Meteorological and Agricultural Drought in Chitral Kabul River Basin Using Multiple Drought Indices. REMOTE SENSING, 12(9), 1417.

Drought is a complex and poorly understood natural hazard in complex terrain and plains lie in foothills of Hindukush-Himalaya-Karakoram region of Central and South Asia. Few research studied climate change scenarios in the transboundary Chitral Kabul River Basin (CKRB) despite its vulnerability to global warming and importance as a region inhabited with more than 10 million people where no treaty on use of water exists between Afghanistan and Pakistan. This study examines the meteorological and agricultural drought between 2000 and 2018 and their future trends from 2020 to 2030 in the CKRB. To study meteorological and agricultural drought comprehensively, various single drought indices such as Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI) and Vegetation Condition Index (VCI), and combined drought indices such as Scaled Drought Condition Index (SDCI) and Microwave Integrated Drought Index (MIDI) were utilized. As non-microwave data were used in MIDI, this index was given a new name as Non-Microwave Integrated Drought Index (NMIDI). Our research has found that 2000 was the driest year in the monsoon season followed by 2004 that experienced both meteorological and agricultural drought between 2000 and 2018. Results also indicate that though there exists spatial variation in the agricultural and meteorological drought, but temporally there has been a decreasing trend observed from 2000 to 2018 for both types of droughts. This trend is projected to continue in the future drought projections between 2020 and 2030. The overall study results indicate that drought can be properly assessed by integration of different data sources and therefore management plans can be developed to address the risk and signing new treaties.