Publications

Cao, ZY; Chen, SH; Gao, F; Li, XK (2020). Improving phenological monitoring of winter wheat by considering sensor spectral response in spatiotemporal image fusion. PHYSICS AND CHEMISTRY OF THE EARTH, 116, 102859.

Abstract
Multisensor image fusion results may deviate from accurately reflecting the phenological stages of winter wheat because different responses of satellite sensors to the spectrum lead to the radiometric inconsistency between different remote sensing images. To reduce the effect of the difference in the physical electromagnetic spectrum responses between sensors on monitoring the phenological stages of winter wheat by fusion results, Sensor Spectral Response (SSR) should be considered in spatiotemporal fusion methods. This paper proposes a novel image fusion model by introducing SSR into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The contribution of SSR in minimizing the effect of the system difference between sensors on image fusion products is parameterized as a calibration factor by matrixing operation, which is able to offset the systematic inconsistency between different sensor images. Linear regression equation for different land cover type and spectral band is established to calculate the weights needed in STARFM for improving the selection of neighboring spectrally similar pixels. This proposed method is evaluated using one satellite datasets including four ZY-3 (5.8 m) and Landsat 8 OLI (30 m) scenes which are acquired during the growth stages of winter wheat from seedling to harvest. Qualitative and quantitative evaluation shows that the proposed method can better monitor the phenology of winter wheat with an improved spatial and temporal consistency with the observations than STARFM.

DOI:
10.1016/j.pce.2020.102859

ISSN:
1474-7065