Wang, Y; Chen, LF; Xin, JY; Wang, XH (2020). Impact of the Dust Aerosol Model on the VIIRS Aerosol Optical Depth (AOD) Product across China. REMOTE SENSING, 12(6), 991.

The Visible Infrared Imaging Radiometer Suite (VIIRS) has been observing aerosol optical depth (AOD), which is a critical parameter in air pollution and climate change, for more than 7 years since 2012. Due to limited and uneven distribution of the Aerosol Robotic Network (AERONET) station in China, the independent data from the Campaign on Atmospheric Aerosol Research Network of China (CARE-China) was used to evaluate the National Oceanic and Atmospheric Administration (NOAA) VIIRS AOD products in six typical sites and analyze the influence of the aerosol model selection process in five subregions, particularly for dust. Compared with ground-based observations, the performance of all retrievals (except the Shapotou (SPT) site) is similar to other previous studies on a global scale. However, the results illustrate that the AOD retrievals with the dust model showed poor consistency with a regression equation as y = 0.312x + 0.086, while the retrievals obtained from the other models perform much better with a regression equation as y = 0.783x + 0.119. The poor AOD retrieval with the dust model was also verified by a comparison with the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product. The results show they have a lower correlation coefficient (R) and a higher mean relative error (MRE) when the aerosol model used in the retrieval is identified as dust. According to the Ultraviolet Aerosol Index (UVAI), the frequency of dust type over southern China is inconsistent with the actual atmospheric condition. In addition, a comparison of ground-based angstrom ngstrom exponent (alpha) values yields an unexpected result that the dust model percentage exceed 40% when alpha < 1.0, and the mean alpha shows a high value of 0.75. Meanwhile, the alpha peak value (1.1) of the "dust" model determined by a satellite retravel algorithm indicate there is some problem in the dust model selection process. This mismatching of the aerosol model may partly explain the low accuracy at the SPT and the systemic biases in regional and global validations.